我有 2 个数据框:1. 产品,2. 我正在尝试的每日余额:
- 按“Artical”列对产品进行排序,从“prod_df”到“sales_df”
- 对于找到的每个产品,更改数量“Start_of_Day”和“End_of_Day”
- 如果日期小于“report_start”减 1 天,则“Start_of_Day”和“End_of_Day”等于“Qty”
- 如果不是,则“Start_of_Day”等于前一天的“End_of_Day”,并且“End_of_Day”等于“Qty”
结果,我想要得到如图所示的 DataFrame。但我得到一个 DataFrame,其中“Start_of_Day”和“End_of_Day”等于 0
如何替换值?
这是我尝试过的:
mport pandas as pd
from datetime import timedelta
report_start = '01.06.2024'
report_start = pd.to_datetime(report_start, format='%d.%m.%Y',errors='coerce')
report_end = '04.06.2024'
report_end = pd.to_datetime(report_end, format='%d.%m.%Y',errors='coerce')
prod_df = pd.DataFrame({
'Artical': ['111', '222', '333', '444'],
'Name': ['name1', 'name2', 'name3', 'name4'],
})
sales_df = pd.DataFrame({
'Artical': ['111', '111', '111', '111', '111', '222', '222', '222', '222', '222'],
'Date': ['31.05.2024', '01.06.2024', '02.06.2024', '03.06.2024', '04.06.2024', '31.05.2024', '01.06.2024', '02.06.2024', '03.06.2024', '04.06.2024'],
'Qty': ['2172', '2172', '2172', '2128', '2128', '0', '2068', '2068', '2056', '2056']
})
frames = []
for i in prod_df['Artical']:
data = sales_df[(sales_df['Artical'] == str(i))].reset_index(drop=True)
data['Start_of_Day'] = 0
data['End_of_Day'] = 0
if data.empty == False:
for index, row in data.iterrows():
if row['Date'] == (report_start - timedelta(days=1)):
row['Start_of_Day'] = row['Qty']
row['End_of_Day'] = row['Qty']
# row['qtyStart_of_Day'] = row['qtyStart_of_Day'].replace(0, row['Qty'])
print(row)
else:
new_qty = data[(data['Date'] == (report_start - timedelta(days=1)))].reset_index(drop=True)
row['Start_of_Day'] = new_qty['End_of_Day']
row['End_of_Day'] = row['Qty']
frames.append(data)
final_df = pd.concat(frames, axis=0, ignore_index=True)
print(final_df)
好吧,这是带有注释的“向量”方法的示例